This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

Syntheses and structures of copper complexes of tetradentate enaminones derived from condensation of benzoylacetone and ferrocenoylacetone with 1,2-<i>bis</i>(2-aminophenoxy)ethane

Yao-Cheng Shi^a; Yi-Yi Hu^a ^a School of Chemistry, Yangzhou University, Yangzhou, P.R. China

First published on: 29 July 2010

To cite this Article Shi, Yao-Cheng and Hu, Yi-Yi(2009) 'Syntheses and structures of copper complexes of tetradentate enaminones derived from condensation of benzoylacetone and ferrocenoylacetone with 1,2-**<i>bis</i>**(2-aminophenoxy)ethane', Journal of Coordination Chemistry, 62: 8, 1302 — 1312, First published on: 29 July 2010 (iFirst) **To link to this Article: DOI**: 10.1080/00958970802573028

URL: http://dx.doi.org/10.1080/00958970802573028

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Syntheses and structures of copper complexes of tetradentate enaminones derived from condensation of benzoylacetone and ferrocenoylacetone with 1,2-*bis*(2-aminophenoxy)ethane

YAO-CHENG SHI* and YI-YI HU

School of Chemistry, Yangzhou University, Yangzhou, P.R. China

(Received 16 April 2008; in final form 21 July 2008)

Reaction of 1,2-*bis*(2-aminophenoxy)ethane with benzoylacetone and ferrocenoylacetone yields tetradentate enaminones H_2L^1 and H_2L^2 , respectively. Reaction of copper acetate with two enaminones affords the corresponding complexes **1** and **2**, which are formulated as [L¹Cu] and [L²Cu], respectively. The structures of H_2L^1 , H_2L^2 and **1** have been determined by single-crystal X-ray crystallography. Enaminone H_2L^1 crystallizes with Z=4 in space group C2/c, the molecule of which lies on a C_2 axis. Enaminone H_2L^2 crystallizes with Z=2 in space group $P2_1/c$, the molecule of which possesses a symmetric center. For complex **1**, which crystallizes in space group $P\overline{1}$, H_2L^1 is a bianionic tetradentate donor via two carbonyl oxygens and two deprotonated enamine nitrogens; the coordination geometry of copper(II) is a distorted tetrahedron.

Keywords: β-Diketone; Enaminone; Complex; Copper; X-ray crystallography

1. Introduction

Multidentate ligands with varying combinations of donor atoms and charges have become increasingly popular for bonding transition metals, lanthanides, and main group elements [1–3]. Complexes of enaminones have attracted attention because Group IV metal complexes are alternatives to metallocene catalysts, and anions generated from enaminones are isoelectronic alternatives to cyclopentadienyl-based anions [4–8]. Enaminones are easily synthesized from inexpensive and readily available starting materials. More importantly, through an appropriate choice of primary amine and β -diketone used in their syntheses, the steric and electronic properties of enaminones can be tuned and chirality and further functionalization readily introduced [9–11]. These enaminones are versatile synthetic intermediates that combine the nucleophilicity of enamines with the electrophilicity of enones and have been extensively used for preparation of a variety of heterocyclic systems including some natural products and analogues [12, 13]. As part of an ongoing investigation of the chemistry of enaminones, the title compounds have been synthesized and structurally characterized [14–20].

^{*}Corresponding author. Email: ycshi@yzu.edu.cn

2. Experimental

2.1. Reagents and general procedures

All chemicals were of reagent grade. Air-sensitive reactions were carried out under dinitrogen, but subsequent work-up was in air. Ferrocenoylacetone and benzoylacetone were synthesized by acylation of acetylferrocene and acetophenone using ethyl acetate in THF in the presence of sodium ethoxide [14]. Progress of reactions was monitored by TLC (silica gel H). ¹H NMR spectra were carried out on a Bruker Avance 600 spectrometer using TMS as an external standard in CDCl₃. IR spectra were recorded on a Bruker Tensor 27 spectrometer as KBr disks in the range 400–4000 cm⁻¹. UV spectra were measured with a Shimadzu UV-2550 spectrometer in DMF. Analyses for C, H, and N were performed on an Elementa Vario EL III instrument. Melting points were measured on a Yanagimoto apparatus and are uncorrected.

2.2. Syntheses of tetradentate enaminones H_2L^1 and H_2L^2

A 25 mL toluene solution of benzoylacetone (0.649 g, 4 mmol) and 1,2-*bis* (2-aminophenoxy)ethane (0.485 g, 2 mmol) in the presence of a catalytic amount of *p*-toluenesulfonic acid (0.01 g) was refluxed for 42 h. After removal of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (200–300 mesh) using diethyl ether and petroleum ether (v/v, 1 : 1) as eluent to afford 1.96 g (73%) of enaminone HL¹ as a yellow solid. M.p. 135–135.8°C. Anal. Calcd for C₃₄H₃₂N₂O₄ (%): C, 76.66; H, 6.06; N, 5.26. Found: C, 76.44; H, 6.08; N, 4.97. IR (KBr disk): v(NH) 3042 (m), v(C=O) and v(C=C) 1609 (vs) and 1542 (vs) cm⁻¹. UV (nm, in DMF): λ_{max} ($\varepsilon \times 10^4$, in dm³ mol⁻¹ cm⁻¹) 271 (B-band) (0.64), 364 (K-band) (2.16) nm. ¹H NMR (CDCl₃): δ 2.10 (s, 6H, 2CH₃), 4.496 (s, 4H, 2OCH₂), 5.87 (s, 2H, 2CH), 6.93–6.96, 7.10–7.18, 7.40–7.47, 7.88–7.89 [t, m, m, d, 2H, 6H, 6H, 4H, 2(C₆H₄/C₆H₅)], 13.59 (s, 2H, 2NH) ppm.

Similar reaction of ferrocenoylacetone (0.540 g, 2 mmol) and 1,2-*bis*(2-aminophenoxy)ethane (0.242 g, 1 mmol) in 25 mL of toluene for 18 h afforded 0.485 g (65%) of enaminone H_2L^2 as a red solid. M.p. 207.8–208.0°C. Anal. Calcd for $C_{42}H_{40}N_2O_4Fe_2$ (%): C, 67.36; H, 5.39; N, 3.74. Found: C, 67.22; H, 5.46; N, 3.93. IR (KBr disk): ν (NH) 3082 (w), ν (C=O) and ν (C=C) 1609 (vs) and 1551 (vs) cm⁻¹. UV (nm, in DMF): λ_{max} ($\varepsilon \times 10^4$, in dm³ mol⁻¹ cm⁻¹) 269 (B-band) (0.45), 330 (K-band) (1.36), 448 (CT-band) (0.065) nm. ¹H NMR (CDCl₃): δ 2.10 (s, 6H, 2CH₃), 4.10 (s, 10H, 2C₅H₅), 4.32 (s, 4H, 2(H³, H⁴) of C₅H₄ rings), 4.33 (s, 4H, 2OCH₂), 4.70 (s, 4H, 2(H², H⁵) of C₅H₄ rings), 5.39 (s, 2H, 2CH), 6.90–7.12 (m, 8H, 2C₆H₄), 12.41 (s, 2H, 2NH) ppm.

2.3. Syntheses of complexes 1 and 2

A solution of $Cu(OAc)_2 \cdot H_2O$ (0.080 g, 0.4 mmol) and H_2L^1 (0.213 g, 0.4 mmol) in 15 mL of absolute ethanol was stirred for 6 h at room temperature. The mixture was filtered to afford the brown crude product. The resulting solid was recrystallized from dichloromethane and petroleum ether (60–90 °C) to give 0.216 g (91%) of 1 as

brown crystals. D.p. 176.2–176.8°C. Anal. Calcd for $C_{34}H_{30}N_2O_4Cu$ (%): C, 68.73; H, 5.09; N, 4.71. Found: C, 68.50; H, 4.74; N, 4.41. IR (KBr disk): ν (C=O) 1571 (vs), ν (C=C) 1504 (vs) cm⁻¹. UV (nm, in DMF): λ_{max} ($\varepsilon \times 10^4$, in dm³ mol⁻¹ cm⁻¹) 292 (B-band) (0.91), 357 (1.55) (K-band) nm.

Similar reaction of Cu(OAc)₂·H₂O (0.060 g, 0.3 mmol) and H₂L² (0.225 g, 0.3 mmol) in 15 mL of absolute ethanol afforded 0.158 g (65%) of **2** as brown crystals. M.p. 101.5–101.9°C. Anal. Calcd for C₄₂H₃₈Fe₂N₂O₄Cu (%): C, 62.28; H, 4.73; N, 3.46. Found: C, 62.03; H, 4.61; N, 3.56. IR (KBr disk): ν (C=O) 1588 (s), ν (C=C) 1506 (vs) cm⁻¹. UV (nm, in DMF): λ_{max} ($\varepsilon \times 10^4$, in dm³ mol⁻¹ cm⁻¹) 288 (B-band) (5.69), 348 (3.87) (K-band), 451 (0.12) (CT-band) nm.

2.4. Crystal structure determinations

Single crystals suitable for X-ray diffraction were obtained by slow evaporation from dichloromethane and petroleum ether solutions of H_2L^1 , H_2L^2 and 1. X-ray data of the three compounds were collected on an Enraf-Nonius CAD4 diffractometer at 295 K using graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods and subsequently refined on F^2 using full-matrix least-squares methods, all non-hydrogen atoms were refined anisotropically, and hydrogen atoms were located at calculated positions [21, 22]. A summary of the data collection and structure refinement parameters of HL¹, H₂L² and 1 is given in table 1. Plots of H₂L¹, H₂L² and 1 are drawn using PLATON software [23].

3. Results and discussion

3.1. Syntheses of tetradentate enaminones and copper complexes

1,2-*Bis*(2-aminophenoxy)ethane reacts with benzoylacetone and ferrocenoylacetone to afford tetradentate enaminones H_2L^1 and H_2L^2 , as shown in equation (1). Reactions of copper acetate with H_2L^1 and H_2L^2 give the corresponding complexes 1 and 2, formulated as $[L^1Cu]$ and $[L^2Cu]$, respectively [equation (2)]. Structures have been unambiguously determined by single-crystal X-ray crystallography for H_2L^1 , H_2L^2 and 1.

3.2. Crystal structures

3.2.1. Crystal structures of H_2L^1 and H_2L^2 . The molecular structures of enaminones H_2L^1 and H_2L^2 are shown in figures 1 and 2. Selected geometric parameters for H_2L^1 and H_2L^2 are listed in tables 2 and 3. H_2L^1 lies on a two-fold rotation axis and H_2L^2 possesses a symmetric center. As noted previously, the O=C-C=C-N moiety is planar and the bond lengths indicate electron delocalization [14, 24]. However, H_2L^1 and H_2L^2 show different conformations. The O=C-C=C-N plane is twisted with respect to the monosubstituted benzene or substituted cyclopentadiene ring and the disubstituted benzene ring by $16.8(2)^{\circ}$ and $35.5(1)^{\circ}$ for H_2L^1 and $9.6(3)^{\circ}$ and $46.6(3)^{\circ}$ for H_2L^2 .

Compound	H_2L^1	H_2L^2	1
Formula	C ₃₄ H ₃₂ N ₂ O ₄	C42H40Fe2N2O4	C34H30CuN2O4
Formula weight	532.62	748.46	594.15
Crystal size (mm)	$0.17 \times 0.17 \times 0.14$	$0.22 \times 0.15 \times 0.13$	$0.21 \times 0.17 \times 0.12$
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	C2/c	$P2_1/c$	$P\overline{1}$
Unit cell dimensions (°, Å)	1	1/	
a	20.7943(11)	14.329(2)	9.759(3)
b	14.5650(8)	10.938(2)	10.592(2)
С	9.2456(14)	11.351(2)	14.791(1)
α			95.23(2)
β	93.371(6)	100.57(2)	90.10(1)
r V			110.15(2)
$V(\dot{A}^3)$	2795.4(5)	1748.9(5)	1428.5(6)
Z	4	2	2
$D_{c} (g cm^{-1})$	1.266	1.421	1.381
F (000)	1128	780	618
$T(\mathbf{K})$	295	295	295
μ (Mo-K α)(mm ⁻¹)	0.083	0.876	0.806
Scan mode	$\omega - 2\theta$	$\omega - 2\theta$	$\omega - 2\theta$
9 Range (°)	1.71-25.97	1.45-25.99	1.38-25.97
Limiting indices	0 < h < 25.	-17 < h < 17.	0 < h < 12.
6	$0 \le k \le 17$.	$-13 \le k \le 0$.	-13 < k < 12.
	-11 < l < 11	0 < l < 13	-18 < l < 18
Absorption correction	PSI-scan	PSI-scan	PSI-scan
Reflections collected	2803	3615	5914
Independent reflections	2729	3430	5565
	$[R_{\rm int} = 0.047]$	$[R_{int} = 0.036]$	$[R_{int} = 0.048]$
No. of parameters refined	186	227	372
Final \vec{R} indices $[I > 2.0\sigma(I)]$	R, 0.0621;	R, 0.0663;	R, 0.0873;
	wR, 0.1138	wR, 0.1106	wR, 0.1844
R indices (all data)	R, 0.1451;	R, 0.1447;	R, 0.1537;
	wR, 0.1436	wR, 0.1355	wR, 0.2124
Goodness of Fit	1.01	1.02	1.09
Max peak and hole $(e \text{ Å}^{-3})$	0.17 and -0.22	0.32 and -0.32	0.58 and -0.66

Table 1. Summary of the data collection and structure refinement parameters of H_2L^1 , H_2L^2 , and 1.

 $R = Ph, H_2L^1; R = Fc, H_2L^2$

Equation 1. Syntheses of tetradentate enaminones.

Consistent with the large dihedral angles between the O=C-C=C-N plane and substituted cyclopentadienyl ring, the C6–C7 and C10–C11 bonds linking the O=C-C=C-N moiety and the monosubstituted benzene or the substituted cyclopentadienyl ring are typical of a single bond (Csp2–Csp2), suggesting that the monosubstituted

Equation 2. Syntheses of copper complexes.

Figure 1. ORTEP plot of H_2L^1 showing atom labeling; thermal ellipsoids are drawn at the 30% probability ellipsoids. Symmetry code: (i) 1 - x, y, 1/2 - z. The intramolecular hydrogen bond is shown as a dashed line.

benzene or substituted cyclopentadienyl ring is not involved in conjugation of the O=C-C=C-N moiety.

Although both enaminones have strong $[N-H\cdots O=C]$ intramolecular hydrogen bonds, their packing modes generated from the weak interactions are markedly different (figures 3 and 4). For H₂L¹, atom C17 in molecule at (x, y, z) is a hydrogenbond donor via H17A to carbonyl atom O1 at (x, 1-y, -1/2+z) and O1 at (x, y, z)acts as a hydrogen-bond acceptor; C17 at $(x, 1-y, \frac{1}{2}+z)$ is a hydrogen-bond donor, generating an infinite 1-D chain in the [001] direction (figure 3). For H₂L², weak C-H $\cdots \pi$ (Cp) hydrogen bonds are present in which C16 at (x, y, z) is a hydrogen-bond donor via H16 to the C1–C5 ring at (x, -1+y, z), resulting in an infinite 1-D chain in the [010] direction (figure 4).

Figure 2. ORTEP plot of H_2L^2 showing atom labeling; thermal ellipsoids are drawn at the 30% probability ellipsoids. Symmetry code: (*) 1 - x, 1 - y, 1 - z. The intramolecular hydrogen bond is shown as a dashed line.

Table 2. Selected geometric parameters (Å, $^{\circ}$) for H₂L¹.

O1–C7	1.244(3)	C8–C9	1.377(4)
C6–C7	1.500(4)	C9–N1	1.345(4)
C7–C8	1.416(4)	C11-N1	1.414(3)
$C17 \cdot \cdot \cdot O1^{a}$	3.390(3)	N1···O1	2.647(3)
$H17A \cdots O1^{a}$	2.48	H1N···O1	1.95(3)
O1–C7–C6	118.4(3)	N1-C9-C8	119.9(3)
O1–C7–C8	122.2(3)	N1-C9-C10	120.6(3)
C6–C7–C8	119.3(3)	C8-C9-C10	119.5(3)
C7–C8–C9	125.3(3)	C9-N1-C11	131.1(3)
C17–H17A···O1 ^a	156	N1–H1N···O1	141(3)

Note: ^aSymmetry code: x, 1 - y, -1/2 + z.

3.2.2. Crystal structure of 1. The molecular structure of 1 is shown in figure 5 and selected geometric parameters are listed in table 4. In 1, H_2L^1 is a dianionic tetradentate ligand after deprotonation of two enamine nitrogens, namely an N2O2 donor. Against expectation, copper(II) ion is not coplanar with the O=C-C=C-N plane, with distances of 0.2461(9) and 0.3484(9) Å, for planes O1-N1-C7-C8-C9 and O3-N2-C26-C27-C28, respectively. The OCH₂CH₂O bridge has a gauche conformation, with torsion angle of $-67.2(8)^{\circ}$ for O2-C17-C18-O4. The angles 149.8(2)°, 93.0(2)°, 160.6(3)° and 92.9(2)° of O1-Cu1-O3, O1-Cu1-N1, N1-Cu1-N2 and N2-Cu1-O3, respectively, indicate that the coordination geometry of copper(II) is

01–C11	1.246(5)	C13-N1	1.342(6)
C10-C11	1.481(7)	C13-C14	1.483(6)
C11–C12	1.424(7)	C15-N1	1.415(6)
C12–C13	1.378(6)	N1···O1	2.650(5)
C16···Cg1 ^a	3.455	N1–H1N	0.86
$H16 \cdots Cg1^{a}$	2.762	H1N···O1	1.95
O1-C11-C10	118.9 (5)	N1-C13-C12	119.6(5)
O1-C11-C12	122.9 (5)	N1-C13-C14	119.2(4)
C10-C11-C12	118.2 (5)	C12-C13-C14	121.1(5)
C11-C12-C13	124.9 (5)	C13-N1-C15	129.3(4)
C16–H16···Cg1 ^a	132	N1–H1N···O1	137

Table 3. Selected geometric parameters (Å, $^{\circ}$) for H₂L².

Notes: Cg1 is the centroid of the C1–C5 ring. ^aSymmetry code: x, -1 + y, z.

Figure 3. Packing diagram of H_2L^1 showing formation of an infinite chain in the [001] direction. Dashed lines indicate hydrogen bonds. For clarity, H atoms not involved in the motif have been omitted. Atoms marked with an ampersand (&), hash (#), dollar sign (\$), asterisk (*) or prime (') are at the symmetry positions (x, 1-y, -1/2+z), (1-x, 1-y, -z), (1-x, y, 1/2-z), (1-x, 1-y, 1-z) and (x, 1-y, 1/2+z), respectively.

tetrahedrally-distorted, due to weak interactions from the Cu1 to O2 and O4 at 3.292(5) and 3.173(6) Å, respectively. Therefore, the measured N-Cu-N and O-Cu-O angles are considerably larger than the corresponding values observed in related structures [16, 25–28]. Bond lengths of Cu1–O1, Cu1–O3 and Cu1–N1, Cu1–N2 are 1.898(5), 1.903(5) and 1.950(5), 1.966(5) Å and are considerably shorter than those reported for N, N'-ethylenebis(acetylacetoneiminato)copper (mean 1.94 and 1.98 Å) [25]. Interestingly, Cu–O bonds significantly shorter are than those in $[C_5H_5FeC_5H_4C(O)CH=C(CH_3)NCH_2]_2Cu$ [mean 1.924(6) for the anti isomer and

Figure 4. Packing diagram of H_2L^2 showing the formation of an infinite chain via C-H··· π (Cp) hydrogen bonds in the [010] direction. Dashed lines indicate hydrogen bonds. For clarity, H atoms not involved in the motif have been omitted. Atoms marked with an asterisk (*), ampersand (&) or dollar sign (\$) are at the symmetry positions (1-x, 1-y, 1-z), (x, -1+y, z) and (x, 1+y, z), respectively.

1.913(6) Å for the syn isomer]. However, Cu–N bonds are significantly longer than those in $[C_5H_5FeC_5H_4C(O)CH=C(CH_3)NCH_2]_2Cu$ [1.927(8) Å for the anti isomer and 1.924(8) Å for the syn isomer] [16, 29, 30]. Like H_2L^1 , bond lengths of the O=C-C=C-N indicate delocalization of bonding electron density. The dihedral angles between the O=C-C=C-N plane and monosubstituted benzene rings, C1–C5 and C29–C34, are 23.7(4)° and 4.1(4)°, respectively. Furthermore, the C6–C7 and C28–C29 bonds of 1.490(10) and 1.491(10) Å linking the O=C-C=C-N moiety and the monosubstituted benzene ring are typical of a single bond (Csp2–Csp2), suggesting that the benzene ring is not involved in conjugation of the O=C-C=C-N moiety.

Although 1 is chiral, it crystallizes in the achiral space group listed in table 4, crystallizing as a racemate in the unit cell.

3.3. ¹H NMR spectra

The ¹H NMR spectrum of H_2L^1 reveals that it exists entirely in the bis(ketoenamine) form, shown in equation (1) [14, 31–33]. Protons of C(O)CH=CCH₃ show singlets at δ 5.87 and 2.10 ppm, respectively. The OCH₂ exhibits a singlet at δ 4.496 ppm. The monosubstituted and disubstituted phenyl groups display one triplet at δ 6.93–6.96 ppm, two multiplets at 7.10–7.18 and 7.40–7.47 ppm and one doublet at δ 7.88–7.89 ppm. The NH is a singlet at δ 13.59 ppm and disappears in the presence of D₂O. The very downfield position of this singlet results from intramolecular hydrogen bonding. In the spectrum of H_2L^2 , the ferrocenyl group is three singlets at δ 4.10, 4.32 and 4.70 ppm. Protons of the C(O)CH=CCH₃ moiety show singlets at δ 5.39 and 2.10 ppm. The OCH₂ is a singlet at δ 4.33 ppm and the NH at δ 12.41 ppm, disappearing in D₂O.

3.4. IR spectra

IR spectra of **1** and **2** display significant changes compared with H_2L^1 and H_2L^2 . Bands at 3042–3082 cm⁻¹ in H_2L^1 and H_2L^2 due to ν (NH) do not appear in **1** and **2**. Furthermore, strong bands assignable to stretching vibrations of skeleton O=C and C=C groups, at 1609, 1542, and 1609, 1551 cm⁻¹ in H_2L^1 and H_2L^2 , respectively, shift to 1571, 1504 and 1588, 1506 cm⁻¹ [14–18]. Therefore, H_2L^1 and H_2L^2 are dianionic N₂O₂ tetradentate ligands coordinated to copper(II) via two carbonyl oxygens and two deprotonated enamine nitrogens, in agreement with the crystal structure of **1**.

Figure 5. ORTEP plot of **1** showing atom labeling; thermal ellipsoids are drawn at the 30% probability ellipsoids. Dashed lines indicate weak interactions from Cu1 to O2 and O4.

					. Y		-	
Table .	4	Selected	geometric	narameters	(A) 	for	1
rable	т.	Sciected	geometric	parameters	(<i>n</i> ,		101	1.

O1–C7	1.285(8)	C26-N2	1.310(9)
C6-C7	1.490(10)	C26–C27	1.397(10)
C7–C8	1.368(9)	C27–C28	1.376(9)
C8–C9	1.406(10)	C28–C29	1.491(10)
C9-N1	1.308(8)	Cu1–O1	1.898(5)
C9-C10	1.513(10)	Cu1–O3	1.903(5)
C11-N1	1.455(8)	Cu1–N1	1.950(5)
C24-N2	1.419(9)	Cu1–N2	1.966(5)
C25-C26	1.531(10)		
O1-C7-C6	114.2(6)	C26-C27-C28	126.6(7)
O1C7C8	124.1(7)	O3–C28–C27	123.7(7)
C6C7C8	121.7(6)	O3-C28-C29	114.3(6)
С7-С8-С9	126.6(6)	C27-C28-C29	122.0(6)
N1-C9-C8	122.5(6)	O1–Cu1–O3	149.8(2)
N1-C9-C10	119.9(7)	O1–Cu1–N1	93.0(2)
C8-C9-C10	117.6(6)	O3–Cu1–N1	92.9(2)
N2-C26-C27	123.6(7)	O1–Cu1–N2	91.3(2)
N2-C26-C25	120.0(7)	O3–Cu1–N2	92.9(2)
C25-C26-C27	116.4(6)	N1-Cu1-N2	160.6(2)

3.5. UV spectra

In UV spectra, H_2L^1 and **1** show maxima at ca. 271–292 and 357–364 nm, which are attributed to the B-band of the benzene ring and K-band. However, H_2L^2 and **2** display maxima at ca. 269–288, 330–348 and 448–451 nm due to the B-band of benzene and cyclopentadienyl rings, K-band and CT-band of the ferrocenyl group [14–18].

For 1 and 2, the B-band is red shifted compared with H_2L^1 and H_2L^2 , whereas the K-band exhibits a blue shift. For the CT-band, 2 shows a slight red shift.

4. Conclusion

Reaction of 1,2-*bis*(2-aminophenoxy)ethane with benzoylacetone and ferrocenoylacetone give tetradentate enaminones H_2L^1 and H_2L^2 , respectively. Reaction of copper acetate with H_2L^1 and H_2L^2 gave the corresponding complexes 1 and 2, formulated as $[L^1Cu]$ and $[L^2Cu]$, respectively. The crystal structures of H_2L^1 , H_2L^2 and 1 have been determined by single-crystal X-ray crystallography. In 1, the coordination geometry of the central metal is a distorted tetrahedron in which the ligand is a dianionic N_2O_2 donor via two carbonyl oxygens and two deprotonated enamine nitrogens.

Supplementary data

Full crystallographic data (CCDC No. 683404 for H_2L^1 , CCDC No. 683405 for H_2L^2 and CCDC No. 683598 for 1) have been deposited at the Cambridge Crystallographic Database Centre and are available on request from the Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (Fax: +44-1223-336-033; Email: deposit@ccdc. cam.ac.uk or http://www.ccdc.cam.ac.uk).

Acknowledgements

The authors thank the National Nature Science Foundation of China (No. 20572091) and Nature Science Foundation of Jiangsu Province (No. 05KJB150151) for financial support of this work.

References

- [1] J.P. Costes, F. Dahan, J.P. Laurent. Inorg. Chem., 24, 1018 (1985).
- [2] T. Dubé, S. Gambarotta, G. Yap. Organometallics, 19, 121 (2000).
- [3] M. Pešková, P. Sÿimůnek, V. Bertolasi, V. Macháček, A. Lyčka. Organometallics, 25, 2025 (2006).
- [4] T. Sato, H. Takeda, K. Sakai, T. Tsubomuram. Inorg. Chim. Acta, 246, 413 (1996).
- [5] M. Mazzanti, J.M. Rosset, C. Floriani. J. Chem. Soc., Dalton Trans., 953 (1989).
- [6] M.J. Bochmann. J. Chem. Soc., Dalton Trans., 255 (1996).
- [7] D. Jones, A. Roberts, K. Cavell, W. Keim, U. Englert, B.W. Skelton, A.H. White. J. Chem. Soc., Dalton Trans., 255 (1998).
- [8] J. Kim, J.W. Hwang, Y. Kim, M.H. Lee, Y. Han, Y. Do. J. Organomet. Chem., 620, 1 (2001).
- [9] S.G. McGeachin. Can J. Chem. Soc., 46, 1903 (1968).
- [10] G.W. Everett, R.H. Holm. J. Am. Chem. Soc., 88, 2117 (1965).
- [11] J.P. Costes. Inorg. Chim. Acta, 130, 17 (1987).
- [12] A.A. Elassar, A.A. El-Khair. Tetrahedron, 59, 8463 (2003).
- [13] C. Kascheres. J. Braz. Chem. Soc., 14, 945 (2003).
- [14] Y.-C. Shi, H.-M. Yang, W.-B. Shen, C.-G. Yan, X.-Y. Hu. Polyhedron, 23, 15 (2004).
- [15] Y.-C. Shi, H.-M. Yang, H.-B. Song, C.-G. Yan, X.-Y. Hu. Polyhedron, 23, 567 (2004).
- [16] Y.-C. Shi, W.-B. Shen, H.-M. Yang, H.-B. Song, X.-Y. Hu. Polyhedron, 23, 749 (2004).
- [17] Y.-C. Shi, H.-M. Yang, H.-B. Song, Y.-H. Liu. Polyhedron, 23, 1541 (2004).

- [18] Y.-C. Shi, C.-X. Sui, H.-B. Song, P.-M. Jian. J. Coord. Chem., 58, 363 (2005).
- [19] Y.-C. Shi. Acta Cryst., E61, m873 (2005).
- [20] Y.-C. Shi, S.-H. Zhang, H.-J. Cheng, W.-P. Sun. Acta Cryst., C62, m407 (2006).
- [21] G.M. Sheldrick. SHELXS-97, Program for the Solution of Crystal Structures, University of Göttingen, Germany (1997).
- [22] G.M. Sheldrick. SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Germany (1997).
- [23] A.L. Spek. J. Appl. Cryst., 36, 7 (2003).
- [24] P. Gilli, V. Bertolasi, V. Ferretti, G. Gilli. J. Am. Chem. Soc., 122, 10405 (2000).
- [25] D. Hall, A.D. Rae, T.N. Waters. J. Chem. Soc., 5897 (1963).
- [26] G.E. Gurr. Inorg. Chem., 3, 614 (1964).
- [27] J.P. Costes, J.F. Serra, F. Dahan, J.P. Laurent. Inorg. Chem., 25, 2790 (1986).
- [28] M.B. Cingi, A.C. Villa, A.G. Manfredotti, C. Guastini, M. Nardelli. Acta Crystallogr., Sect. B, 28, 1075 (1972).
- [29] Y.-X. Ma, H.-S. Sun, P.-S. Jing, G.-S. Huang. Transit. Metal. Chem., 16, 308 (1991).
- [30] Y. Zhu, H.-S. Sun, G.-S. Huang, Y.-X. Ma. *Transit. Metal. Chem.*, 18, 635 (1993).
 [31] H. Iida, Y. Yuasa, C. Kibayashi, Y. Iitaka. J. Chem. Soc., Dalton Trans., 2212 (1981).
- [32] J.V. Greenhill. Chem. Soc. Rev., 6, 277 (1977).
- [33] M. Kwiatkowski, E. Kwiatkowski, A. Olechnowicz. J. Chem. Soc., Dalton Trans., 2497 (1990).